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Abstract-The two-dimensional nonlinear time domain free surface flow problem is analysed 
using potential flow theory. The problem is solved by a time marching method. At each time 
step two numerical approaches are used. One is based on the boundary element method in 
the complex plane. The complex potential is assumed to vary linearly within each element and 
the solution is obtained by imposing the boundary conditions at the nodes of the elements. 
The other approach is based on the finite element formulation. Triangular elements and linear 
shape functions are used. The solution is obtained by the Galerkin method. Numerical results 
are obtained for the wave elevation generated by a vertical wave maker. Results are also 
provided for a circular cylinder oscillating below the free surface. For these cases the finite 
element method is found to provide substantially more efficient computations than the boundary 
element method using equivalent discretizations. 

1. INTRODUCTION 

Wave loading on large volume offshore structures is commonly estimated based on 
linearized velocity potential theory. This assumes that the parameters under consider- 
ation, such as the wave amplitude, are small. Linearized theory has been found to be 
useful in many cases. In particular, it can capture important phenomena such as 
resonances at wave frequencies. However, neglect of all nonlinear terms in the linearized 
theory means that some important effects are missing. Most noticeable are slowly 
varying drift forces and the high frequency forces associated with “springing”. These 
can be captured by a second-order analysis. In theory it is possible to improve further 
the prediction of wave loading by including third-, fourth- and higher-order terms. In 
practice, however, the mathematical problem beyond second order becomes increasingly 
unworkable. On the other hand, to ensure convergence of the perturbation series, the 
disturbances are required to be small. But it is loading in large waves which is most 
undesirable and has to be controlled. This requires fully nonlinear theory. 

The fully nonlinear theory is usually solved by a time marching method. This assumes 
that the wave profile and the position of the structure are known at a particular instant. 
The problem can then be solved by numerical techniques. The Bernoulli equation 
enables us to find the force on the structure. If the structure is not fixed, Newton’s 
law will give the new acceleration. The acceleration then gives a new velocity which 
further gives the new position of the structure. Similarly, the velocity obtained on the 
free surface will give a new free surface profile. All these will enable the problem to 
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be solved at the next time step. The procedure can be repeated for any desired number 
of time steps. 

The solution at each time step can be obtained by various numerical methods. 
Longuet-Higgins and Cokelet (1976) developed a boundary element method in the 
complex plane. This was later extended by several people (Vinje and Brevig, 1981; 
Lin et al., 1984; New et al., 1985; Zhao and Faltinsen, 1992) to permit solution of a 
variety of nonlinear problems. An alternative method based on a spatial finite difference 
formulation has been developed by Telste (1985) and Yeung and Vaidhanathan (1990). 
Recently, Wu and Eatock Taylor (1994) have developed a finite element formulation. 
Based on calculations for a wave maker started suddenly from rest, and a transient 
wave in a rectangular tank, it has been found that the finite element formulation can 
provide accurate results very efficiently. 

In this paper, we shall consider the two-dimensional radiation problem. Two methods 
have been implemented to solve the potential problem at each time step: the boundary 
element method and the finite element method. The purpose is to compare the results 
obtained by two different methods for verification. A second objective is to assess the 
relative advantages of these methods for a particular problem. In the time domain 
problem, it is common that thousands of time steps are required. At each time step, 
the computational domain is discretized with thousands of nodes. It is extremely 
important to limit the CPU at each time step. A feature of these methods is that if 
one doubles the length of time T over which the computation is made, the required 
CPU may be increased by tens of times. The reason is that, as T increases, the 
accumulated error will increase. To maintain the same accuracy for the final solution, 
a smaller time step is needed, and more elements have to be used at each step, thus 
leading to a significant increase of CPU. This is why an efficient and accurate scheme 
at each time step is so important. 

The paper is arranged as follows. The next section briefly summarizes the nonlinear 
formulation, and the following two sections provide the essential aspects of the two 
numerical methods used to solve the boundary-value problem at each time step (further 
details may be found in the above-mentioned publications). A characteristic of this 
problem is that, as time advances, an increasingly large domain needs to be included 
in the computation. It is shown in Section 5 how domain decomposition may be used 
in conjunction with the finite element method to avoid the difficulties which this might 
otherwise cause. Typical results are presented in Section 6, and some conclusions about 
the relative advantages of the methods are drawn in Section 7. 

2. MATHEMATICAL FORMULATION 

We define a Cartesian coordinate system 0-xy such that the origin is on the mean 
free surface and y points vertically upwards. The fluid is assumed to be incompressible 
and inviscid, and the flow is assumed to be irrotational. A velocity potential 4 can 
then be introduced, which satisfies the Laplace equation 

v2+ = 0 (1) 

in the fluid domain R. On rigid surfaces (the body and the bottom), the boundary 
condition is 
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a’ _ F an- ’ (2) 

where F is the normal velocity on the body and is zero on the bottom, and n is the 
normal of the surface pointing out of the fluid domain. The boundary conditions on 
the free surface S, (or y = q) can be written as 

gq+~+;vQ.v+=o, 
a+ aq a+ aq -= 
9 dt+aXax WI 

where g is the gravitational acceleration and t is time. Equations (3) may also be 
written in the Lagrangian form 

(5) 

The initial conditions at t = O+ are given as 

+(x,Y = 64 = 0) = x(x) q(x,t = 0) = C(x). (6) 

We use a finite difference procedure to advance the solution in the time domain. Thus 
we assume that the potential on the free surface at time t is G (i.e. G = x(x), when 
t = 0). Once the solution at time t has been found, the potential on the new free 
surface profile at a subsequent time t + At can be obtained using Equations (4) and 
(5). This provides the free surface condition at t + At, and the problem can be solved 
again. 

3. BOUNDARY ELEMENT METHOD 

The boundary element method is used to transform the differential equation in the 
fluid domain at each time step into an integral equation over the boundary. For the 
two-dimensional problem, a complex function I3 is defined in the usual way with the 
potential being the real part and the stream function + being the imaginary part. 
Cauchy’s theorem then gives 

f 

P ---ddz = 0, 
z - zo 

where z = x + iy and z. is a point outside the fluid domain. In our implementation, 
the boundary of the fluid domain is specified by n nodes and the adjacent nodes are 
linked by straight lines. We assume that /3 varies with z linearly, or 

P = ,$, PjNjCz) 9 

where 
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{ 

(Z - zj+l)l(zj - zj+l) z E CzjYzj+l) 
Nj(Z) = (Z - Zj_l)l(Zj - Zj-1) 2 E (Zj-l,Zj) (9) 

0 Z 4 (Zj-l,Zj+l) 

and pi is the value of p at node j. Substituting Equation (8) into (7) and letting 20 

approach node zk, we have 

where 

A, = zk 1 f??; ln zr!r ‘k + zk - ‘j+l ln ‘j+l - ‘k, 
zi - zk zj - Zj+l zj - zk 

(11) 

From the boundary conditions we know either the potential or its normal derivative 
(hence the stream function). We define the surface on which the potential is specified 
as S1 and the surface on which the stream function is specified as SZ. These known 
values can then be moved to the right-hand side of Equation (lo), leading to 

+isA&Jj =- 
"2 

+ i c A/&j > (12) 
jES2 j=l jE.% jE:Sl j=l F:S2 

n, and n2 are the number of nodes on S1 and S2 respectively. Furthermore, when node 
k is on S1 the real part of this equation is taken, and when node k is on S2 the 
imaginary part is taken. It should be noticed that on the intersection of the free surface 
and the body surface, both the potential and stream function are known and they are 
both moved to the right-hand side. The total number of equations is therefore the 
number of nodes minus the number of points on the intersection. 

A particular advantage of using the complex potential here is that it leads to a 
diagonally dominated linear matrix equation at each time step. This allows Gauss-Seidel 
iteration to be used, requiring a CPU time of the order of the square of the number 
of nodes multiplied by the number of iterations to achieve the required degree of 
convergence. On the other hand, the real potential satisfies a mixed Dirichlet and 
Neumann problem at each time step, leading to a mixed Fredholm equation of first 
and second kinds. Such an equation is not always diagonally dominated and 
Gauss-Seidel iteration usually diverges. If, however, Gauss elimination is used instead, 
the CPU time is proportional to the cube of the number of nodes, and this will lead 
to a dramatic increase in CPU time when the number of nodes increases. Thus Equation 
(12) in the complex plane is far more efficient. 

4. FINITE ELEMENT METHOD 

The finite element method discretizes the problem in the entire modelled fluid 
domain R. This domain is enclosed by the body surface So, the free surface SF, the 
bottom SB, and an outer vertical boundary SR. The velocity potential is writtten as 

(13) 
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where +j are the nodal values of the potential, IZ is the number of the nodes and 
Nj(x,y) are the shape functions. Application of the Galerkin method leads to 

0 = V2+NidR 
I R 

= [V(V+Ni) - V+VNi] dR 

where S is the boundary of R. By substituting the boundary conditions into the above 
equation, we obtain 

VNi i 4j VNj d&s, = VNi _,zl 4j VNj dR(ies, + (15) 
j=l 

where again S1 and S2 are, respectively, the surfaces on which the potential and its 
normal derivative are specified. The potential on the free surface is known from the 
free surface boundary condition and the corresponding terms have therefore been 
moved to the right-hand side of the equation. This scheme was adopted by Wu and 
Eatock Taylor (1994) and was found to be effective in dealing with the singularity at 
the intersection point between the free surface and the body surface. In matrix form, 
Equation (15) can be written as 

where the coefficients are 

A, = 
J 

ONi VNi dR 
R 

Bi = 
I 

VNi i +j VNj dR[jes, + 
I 

NiF dS . 
R j=l SO 

(17a) 

(17b) 

Here we have replaced S2 by the body surface S,, and S1 by SF (on the assumption 
that a+lan = 0 on the outer vertical boundary SR-this is further discussed in the next 
section). For the results obtained below, triangular elements have been used together 
with linear shape functions. The details of the formulation have been given by Wu 
and Eatock Taylor (1994). 

One of the concerns in the time domain analysis is that the velocity has to be 
calculated accurately in order to avoid excessive accumulated error. A technique based 
on the Galerkin method has been proposed by Wu and Eatock Taylor, and has been 
found to be very satisfactory. Its disadvantage is that the velocity is obtained by solving 
another set of linear equations. The CPU time required is therefore doubled. On the 
other hand, the velocity is not needed everywhere. It is required only on the free 
surface (to calculate the position of the free surface and the potential on the free 
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surface at the next time step) and on the body surface (to calculate the pressure). 
Thus for the results given below we have used the finite difference method to calculate 
the velocity, and this has been found to be satisfactory. 

It is well known that the efficiency of the finite element formulation depends on the 
bandwidth of the final matrix equation, which in turn depends on the order in which 
the nodes are numbered. In this work, we have used an optimization scheme for 
numbering the nodes. Then, in each row, we retain only the coefficients within the 
local bandwidth. As the matrix is symmetric, we store only the upper half (in a one- 
dimensional array). It is found that all these have improved the efficiency and memory 
requirement significantly. 

5. DOMAIN DECOMPOSITION 

As time increases, the radiated waves will propagate further away from the body. This 
means that the computational domain will become larger and larger. The computational 
domain may be truncated some distance away from the body, but this requires an 
appropriate condition (a radiation condition) to be imposed on the truncated boundary. 
For the fully nonlinear problem, however, such a condition has not been established 
for general purposes. There are various conditions currently in use but they all have 
their limitations. Here we have investigated an alternative. 

If the computational domain becomes larger, the memory requirement will eventually 
exceed the practical limit that a computer system can provide. Thus we divide the 
computational domain into many small domains. The computation is then made in 
each domain. To demonstrate the principle of the method, we consider the two sub- 
domains shown in Fig. 1. 

The governing equations can be written as 

P&=0 k= 1,2 

in the corresponding sub-domains; 

(17) 

a+k _ f? an- k k = 1,2 (18) 

on the body surface or the bottom of the fluid; 

+k= Gk k= 1,2 (19) 

on the free surface. These equations are similar to those in Section 2. The difference 

1 sF2 
I- rE 12 

Rl R2 

sB1 SB2 

Fig. 1. Domain decomposition. 
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is that as each potential & is defined in only one sub-domain it is necessary to ensure 
continuity over the boundary of the sub-domains. This can be achieved by specifying 

(20) 

on r12, where at points out of the corresponding fluid domain. 
To solve the above problem, an iterative procedure may be adopted. We use the 

following technique (Glowinski et al., 1984) which is started by choosing a function 
X0 so that 

a+9 a+; -----=A0 
X- an (21) 

on L (Th e su P erscript designates the iteration number.) This allows us to solve the 
problem in each sub-domain. We thereby obtain 4 : and +: on r12 corresponding to 
the first iteration. In the following steps we use 

!?E=_-=p 46 
an an ’ (224 

where 
A” = Am-1 + p((j)T-’ - +;I-1). (22b) 

If p is appropriately chosen, the iteration will converge. This has been shown by 
Glowinski et al. (1984), who have also given details of alternative ways of using domain 
decomposition. 

6. RESULTS AND DISCUSSION 

We first consider the problem of a vertical piston-type wave maker in water of depth 
d. The typical boundary element and finite element meshes are shown in Fig. 2(a) and 
(b). The motion of the wave maker is defined by the following equation: 

(4 

P) 

Fig. 2. Meshes for wave maker problem: (a) boundary elements; (b) finite elements. 
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6 = &(l - cosot). (23) 

The various parameters are nondimensionalized by redefining them as follows: 

++d(g+$ (x,y)-+d(x,y) t+flg)‘t o+(gld)“o. (24) 

It is then easy to confirm that the nondimensionalized boundary condition on the wave 
maker becomes 

+x = F = (w&,/d) sin wt. (25) 

Initially G = 0 on the free surface and it is calculated from Equations (4) and (5) at 
subsequent time steps. 

Figure 3 gives the results corresponding to w = 1.0 and &/d = 0.1. The dimensionless 
time step is taken as 0.025. Figure 3(a) gives the wave elevation history on the wave 
maker, while Fig. 3(b) gives the wave elevation history at x/d = 12. The computational 
domain is truncated at x/d = 40 at which the fluid has not been significantly disturbed, 
as shown in Fig. 3(c). No domain decomposition was applied in the finite element 
analysis of this problem. The meshes are regenerated at each time step, and the values 
of the potential and the wave elevation at the nodes of each new mesh are obtained 
by interpolation. 

It has been observed from the calculations based on the two methods that, as the 
number of nodes increases, the finite element method becomes superior both in terms 
of CPU and memory. Typically, the finite element method takes a few minutes on a 
DEC 3600 workstation for a mesh with 16 elements vertically times 640 horizontally 
(corresponding to a total of 10897 nodes); the boundary element method, however, 
with 16 nodes on the vertical and 640 on the horizontal surfaces (corresponding to a 
total of 1312 nodes), takes a few hours. Most interestingly, it has also been observed 
that as the number of nodes increases, the finite element method requires relatively 
less memory. This is because for the boundary element method all nodes are connected 
by the Green function, which leads to a full matrix. For the finite element method, 
however, the connections between the nodes are only through the physical links, which 
leads to a banded matrix. Thus, although the finite element method has far more 
nodes, the non-zero part of the coefficient matrix is smaller. 

We next consider a submerged circular cylinder of radius a oscillating periodically. 
The horizontal and vertical motions of the centre of the cylinder are defined by the 
following equations: 

6=60(1-coswt) 

5 = 50 (1 - coswt). 

When the solution of the potential 
found from the following equation 

(264 
(26b) 

has been found, the 
(Newman, 1977): 

forces on the cylinder can be 

(27) 

The parameters in this case are defined in a similar way as in Equation (24) apart 
from d being replaced by a. Figure 4 gives the calculated results for purely horizontal 
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Fig. 3. Wave elevation time histories: (a) at the wave maker; (b) at x/d = 12; (c) at t = 30. 
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Fig. 4. Results for a submerged cylinder undergoing horizontal motion: (a) horizontal force; (b) vertical 
force; (c) wave elevation at f = 30. 
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Fig. 5. Results for a submerged cylinder undergoing vertical motion: (a) vertical force; (b) wave elevation 
at t = 30. 

motion (5 = 0). NF and NB indicate numbers of elements used on the free surface 
and body surface respectively. The dimensionless time step has been taken as 0.05. 
The computational domain is truncated at x = ? 50~. The cylinder is submerged at 
h = 1.5~ (the distance from the centre of the cylinder to the mean free surface). The 
water depth is taken as d = 4a, and w = 1.0. The forces (per unit length) have been 
nondimensionalized by &ug. It has been shown recently by Wu (1993) that when a 
cylinder which is symmetric about a vertical plane oscillates horizontally, the horizontal 
force has components at frequencies (2n + 1)~ and the vertical force has components 
at 2no (n = 0,1,2 . . .). This is confirmed in Fig. 4(a) and (b). Figure 4(c) gives the 
wave elevation at t = 30. All these figures show that the results from the two methods 
are in very good agreement. 

Figure 5 gives the results for the same problem when the cylinder is in vertical 
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Fig. 6. Results for a submerged cylinder undergoing horizontal motion, based on domain decomposition: 
(a) horizontal force; (b) vertical force; (c) wave elevation at t = 30. 
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motion (6 = 0). The force has been nondimensionalized by pt;,,ag. Since the problem 
is symmetric about x = 0 and the horizontal force is zero, only the vertical force is 
provided in Fig. 5(a). In Fig. 5(b), the wave elevation at t = 30 is shown. These figures 
again demonstrate that results from the two methods are in good agreement. 

Lastly, we demonstrate use of the domain decomposition method based on the case 
analysed in Fig. 4. Eleven finite element sub-domains were used: one of length 20~ 
centred on the axis of the cylinder and five on either side each of length 8a. At each 
time step, A,, is taken from the solution at the previous step. Equations (21) and (22b) 
are then repeatedly used until the differences between the potentials at the interfaces 
of any two adjacent domains are less than lo- 3. Figure 6 gives the comparison of 
results from the methods with and without domain decomposition. As can be seen 
they agree very closely. 

7. CONCLUSIONS 

Some two-dimensional nonlinear time domain free surface flow problems have been 
solved by two numerical methods. It appears from this that in many cases the finite 
element method may be more efficient and need less memory than the boundary 
element method. However, this conclusion is so far based on rather limited experience. 
For a complicated structure or a multibody problem, it is likely that the bandwidth of 
the matrix in the finite element method may not be easy to control. This will then 
increase the CPU time and memory required. Another possible disadvantage of the 
finite element method is that the mesh for a complicated body is not easy to generate. 
Automated mesh generators and graphics preprocessors, however, are easing this 
difficulty. Finally, our preliminary results also show that the domain decomposition 
method provides accurate results, although further work is needed in this direction. 
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