Frequency Detuning of Parametric Roll
Conference on CeSOS Highlights and AMOS Visions, May 29, 2013

Dominik Breu
Department of Engineering Cybernetics, NTNU, Trondheim, Norway
Centre for Ships and Ocean Structures, NTNU, Trondheim, Norway
Grand Voyager, 2005

Parametric roll resonance and what it *might* look like on the inside
APL China, 1998

- Post-Panamax C11-class
- Route: Kaohsiung - Seattle
- Containers: 1/3 lost, 1/3 damaged
- Estimated damage: US $100M

www.cargolaw.com
Parametric Roll Resonance

Resonance Phenomenon

- Differential equations with time-varying periodic coeff.
- No extern. excitation needed
- Small parametric excitation may lead to large response

Parametric Roll Resonance

- Autoparametric resonance
- Container ships, cruise ships, and fishing vessels

\[m\ddot{\phi} + d\dot{\phi} + k(t)\phi = \tau \]
\[k = k_0 + k_t \cos(\omega_e t) \]

Parametric resonance when

- \(\omega_e \approx 2\sqrt{k_0/m} = \omega_\phi \)
- Wave length \(\approx \) Ship length
- Sufficient wave height
- Low roll damping

Nayfeh and Mook: *Nonlinear Oscillations*, Wiley, 2004
Effect of Waves

Wave trough amidships

Large water plane area

Large τ

Wave crest amidships

Small water plane area

Small τ, large h

Wave trough amidships

Large water plane area

Large τ

Avoid Parametric Roll

Reducing the probability

— Change the ship design
 • Additional damping to dissipate roll energy
 • Modify the shape of the ship (hull form)
— Improved navigation (avoid conditions)

Lessening the impact

— Opposing roll moment
 • Fins
 • Fluid tanks
 • Moving mass
 • Rudder deflection
— Violate the frequency cond.:

\[\omega_e \approx 2 \sqrt{\frac{k_0}{m}} = \omega_\phi \]

Frequency Detuning Control

— Change encounter frequency:

\[\omega_e (u, \psi, \omega_0, \beta_n^w) = \omega_0 - ku \cos (\beta_n^w - \psi) \]
— Change heading and/or speed

\(\omega_e \): Encounter frequency
\(u \): Speed
\(\psi \): Heading angle
\(\omega_0 \): Modal wave freq.
\(k \): Wave number
\(\beta_n^w \): Encounter angle
Modelling of Parametric Roll

- Ship panel model
- Pressure over instantaneous submerged hull
- First-order wave effects
- Consider heave, pitch, and roll motions
- Quasi-steady approach for heave and pitch
- Identification of the hydrostatic/hydrodynamical model coefficients
- Functional expressions of the coefficients
6-DOF Ship Model

\[
\dot{\eta} = J(\Theta) \nu \\
M \dot{\nu} + D(\nu) \nu + C(\nu) \nu + k(\eta, t) = \tau_c + \tau_e
\]

Main characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>281 m</td>
</tr>
<tr>
<td>Breadth</td>
<td>32.3 m</td>
</tr>
<tr>
<td>Draft</td>
<td>11.8 m</td>
</tr>
<tr>
<td>Displacement</td>
<td>76470 t</td>
</tr>
</tbody>
</table>

Generalized position vector: \(\eta = \begin{bmatrix} p^n^\top, \Theta^\top \end{bmatrix}^\top \in \mathbb{R}^6 \)

Generalized velocity vector: \(\nu = \begin{bmatrix} v^b^\top, \omega^b^\top \end{bmatrix}^\top \in \mathbb{R}^6 \)

Transformation matrix: \(J \in \mathbb{R}^{6 \times 6} \)

Rigid-body inertia and added mass: \(M \in \mathbb{R}^{6 \times 6} \)

Damping matrix: \(D \in \mathbb{R}^{6 \times 6} \)

Coriolis/centripetal matrix: \(C \in \mathbb{R}^{6 \times 6} \)

Control and environmental forces: \(\tau_c, \tau_e \in \mathbb{R}^{6} \)

Gravity and pressure forces: \(k(\eta, t) = k_g(\eta) + k_p(\eta, t) \in \mathbb{R}^{6} \)

www.cesos.ntnu.no Breu, Frequency Detuning of Parametric Roll
Pressure Forces

Assumptions

— Ship can be split into panels, each parametrized by \((a, b)\)
— Known pressure field, unchanged by the passage of ship
— Integrate instantaneous pressure over each panel \(i\) of the instantaneously submerged hull \(S_{w,i}\) to give force
 \[
 f_p = \sum_i f_i = \int_{S_{w,i}} \Psi_i(a, b) n(a, b) \, da \, db
 \]
— Parameters \(a\) and \(b\) are functions of \(\eta\) and \(t\)
1-DOF Roll Model

Assumptions

— Waves regular and sinusoidal
 \[\zeta = \zeta_0 \cos (\omega_0 t - k_w x^n) \]

— Waves unaffected by passage of ship

— Encounter frequency approximated by
 \[\omega_e = \frac{d}{dt} \left(\omega_0 t - k_w \int u^n dt \right) \approx \omega_0 - k_w \cos (\psi) u \]

— Roll coupled to heave and pitch

— Quasi-steady approach yields explicit solutions for heave/pitch
 \[
 \begin{bmatrix}
 z(t) \\
 \theta(t)
 \end{bmatrix} =
 \begin{bmatrix}
 \tilde{a}_z \zeta_0 \cos \left(\int_{t_0}^{t} \omega_e (\tau) d\tau + \tilde{\alpha}_z \right) \\
 \tilde{a}_\theta \zeta_0 \cos \left(\int_{t_0}^{t} \omega_e (\tau) d\tau + \tilde{\alpha}_\theta \right)
 \end{bmatrix}
 \]

Signs and Definitions

- \(\zeta \): Wave elevation
- \(\omega_0 \): Modal wave frequency
- \(k_w \): Wave number
- \(x^n \): Position
- \(\psi \): Heading angle
- \(u \): Forward speed

Equation

\[
\ddot{\phi} + d_{44} \dot{\phi} + k_{44} \phi + k_{\phi^3} + k_{z\phi} z \phi + k_{\phi\theta} \phi \theta
\]

1-DOF Roll Model (con’t)

\[m_{44} \ddot{\phi} + d_{44} \dot{\phi} + \left[\kappa_1 + \kappa_2 \cos \left(\int_{t_0}^{t} \omega_e dt + \kappa_3 \right) \right] \phi + \kappa_4 \phi^3 = \kappa_5 \sin \left(\int_{t_0}^{t} \omega_e dt + \kappa_6 \right) \]

Hydrostatic Coefficients

- Linear restoring moment: \(\kappa_1 \)
- Cubic restoring moment: \(\kappa_4 \)
 - Assumed to be constant
 - Identified by free decay test in calm water (simulations of 6-DOF model without waves)
 - Least square curve fitting

Hydrodynamical Coefficients

- Coupling roll – heave/pitch: \(\kappa_2, \kappa_3 \)
- External wave forcing: \(\kappa_5, \kappa_6 \)
 - \(\kappa_i = \kappa_i (u, \psi), i \in \{2, 3, 4, 5\} \)
 - \(\kappa_5 \approx 0 \) for head seas
 - Identified from simulations of the 6-DOF model
 - Least square curve fitting
Model Verification

6-DOF Ship Model

\[
\dot{\eta} = J(\Theta) \nu
\]

\[
M\ddot{\nu} + D(\nu) \nu + C(\nu) \nu + k(\eta, t) = \tau_c + \tau_e
\]

1-DOF Roll Model

\[
m_{44}\dddot{\phi} + d_{44}\ddot{\phi} + \left[\kappa_1 + \kappa_2 \cos\left(\int_{t_0}^{t} \omega_e dt + \kappa_3\right)\right] \phi + \kappa_4 \phi^3 = \kappa_5 \sin\left(\int_{t_0}^{t} \omega_e dt + \kappa_6\right)
\]

— Valid for constant and time-varying speed and heading angle

- Identical Mathieu-type equation for constant \(\omega_e\)
- Functional expressions for the hydrodynamical coefficients
- Analytical model

- Suitable for control purposes
Maximum Roll Angle

6-DOF Model

1-DOF Roll Model

1-DOF/Functional Expr.
Time-Varying Speed

Frequency Detuning Control

— Change encounter frequency:

\[\omega_e (u, \psi, \omega_0, \beta_{nw}) = \omega_0 - ku \cos (\beta_{nw} - \psi) \]

— Change heading and/or speed

\[\omega_e, u, \psi, \omega_0, k, \beta_{nw} \]

\(\omega_e \): Encounter frequency
\(u \): Speed
\(\psi \): Heading angle
\(\omega_0 \): Modal wave freq.
\(k \): Wave number
\(\beta_{nw} \): Encounter angle

www.cesos.ntnu.no

Breu, Frequency Detuning of Parametric Roll
Frequency Detuning Control Approaches

<table>
<thead>
<tr>
<th>Model Predictive Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>— Model-based control method</td>
</tr>
<tr>
<td>— Prediction to find an optimal control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extremum Seeking Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>— Non-model-based adaptive control method</td>
</tr>
<tr>
<td>— Iterative control loop to find optimal control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L_1 Adaptive Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>— Guaranteed robustness with fast adaptation (decoupling)</td>
</tr>
<tr>
<td>— Low-pass filtered parametric estimate</td>
</tr>
</tbody>
</table>

Hovakimyan and Cao: *L_1 Adaptive Control Theory*, SIAM, 2010
Model Predictive Control

Past inputs and outputs → 3-DOF Ship Model

Future inputs

Optimizer

Objective function

Constraints

Future errors

Predicted outputs

Reference trajectory

Results MPC

Extremum Seeking & Param. Resonance

Breu and Fossen: \mathcal{L}_1 Adaptive and Extremum Seeking Control Applied to Roll Parametric Resonance in Ships, Proc. 9th IEEE International Conference on Control and Automation, 2011
L₁ Adaptive Control—Overview

System
\[\dot{x} = A_m x + b \left(\omega u + \theta^\top x + \sigma \right) \]
\[y = c^\top x \]

State Predictor
\[\dot{x} = A_m \hat{x} + b \left(\hat{\omega} u + \hat{\theta}^\top x + \hat{\sigma} \right) \]
\[\hat{y} = c^\top \hat{x} \]

Adaptation Laws
\[\dot{\hat{\omega}} = -\Gamma \text{Proj} \left(\hat{\omega}, -\hat{x}^\top Pb \right) \]
\[\dot{\hat{\sigma}} = -\Gamma \text{Proj} \left(\hat{\sigma}, -\hat{x}^\top Pb \right) \]
\[\dot{\hat{\theta}} = -\Gamma \text{Proj} \left(\hat{\theta}, -\hat{x}^\top Pb \right) \]

BIBS stable reference system:
\[\dot{x}_r = A_m x_r + b \left(\omega u_r + \theta^\top x_r + \sigma \right) \]
\[u_r = C(s) \omega^{-1} \left(k_g r(s) - \eta_r(s) \right) \]
\[y_r = c^\top x_r \]

\[\|\hat{x}\|_\infty \leq \sqrt{\frac{\theta_m}{\lambda_{\min}(P) \Gamma}} \]
\[\|x_{\text{ref}} - x\|_\infty \leq \frac{\gamma_1}{\sqrt{\Gamma}} \]
\[\|u_{\text{ref}} - u\|_\infty \leq \frac{\gamma_2}{\sqrt{\Gamma}} \]

Hovakimyan and Cao: L₁ Adaptive Control Theory, SIAM, 2010
Results Extremum Seeking & \mathcal{L}_1 Adaptive Control

Breu and Fossen: \mathcal{L}_1 Adaptive and Extremum Seeking Control Applied to Roll Parametric Resonance in Ships, Proc. 9th IEEE International Conference on Control and Automation, 2011
Estimation

Challenge: Frequency detuning control assumes knowledge of wave encounter frequency and modal wave frequency.

Extended Kalman Filter
- Model-based estimation
- Optimal in the sense of minimum variance

Linear Frequency Estimator
- Signal-based estimation
- Globally convergent

Frequency Estimation for Irregular Seas
- Empirical mode decomposition, intrinsic mode function
- Ongoing research
Conclusions

— Nonlinear resonance phenomenon
 - Small parametric excitation may lead to large roll angles
 - Dangerous for container ships, cruise ships, and fishing vessels

— The steps to solve the problem
 - Understand the phenomenon
 - Mathematical modelling
 - Control approaches
 - Parameter estimation
Thank you for your attention
Further Reading I

– (2013). A \mathcal{H}-Exponential Stable Nonlinear Observer for the Wave Encounter Frequency. In: *Submitted to the 9th IFAC Conference on Control Applications in Marine Systems*.
Further Reading II

Further Reading III

Further Reading IV

