RECENT DEVELOPMENTS OF THE DESIGN AND ANALYSIS OF FLOATING WIND TURBINES

Torgeir Moan et al.
Centre of Ships and Ocean Structures (CeSOS)
Department of Marine Technology
Norwegian Centre for Offshore Wind Technology (NOWITECH)
tormo@ntnu.no
http://www.cesos.ntnu.no/
http://www.marin.ntnu.no/~tormo

Outline
• Background
 - the threat of climate change
 - renewable energy – from the oceans
• Wind energy offshore
• Wind technology development and research
 - concept development
 - design
 - analysis
• Demonstration projects (field testing)
• Concluding remarks

Background
Motivation: IEA/IPCC
“The threat of climate change calls for an energy revolution,
-especially to limit the GHG emissions”
- investment in renewable energy, led by wind and solar, is
 increasing substantially, and shows signs that this change is underway
(IEA Energy Technology Perspectives 2010; IPCC SRREN,2011)

Renewable energy is forecasted to increase its share from 12.9 % of the total global primary energy supply in 2008 to 21 % in 2050

Wind energy offshore - prognosis

In Europe 40 GW is planned by 2020, implying a 20-25 % annual growth in installed capacity

Installing 40 GW requires about 10-15 000 windmills. This will imply a multi-billion-euro/dollar-industry in the years to come.
Wind energy conversion into mechanical torque and finally to electrical power

- Kinetic energy in wind: \[E = \frac{1}{2} m v^2 \] (J)
- Power in the wind: \[P_{\text{wind}} = \frac{1}{2} \rho A v^3 \] (W (m/s^-1))
- Electrical power: \[P = C_P P_{\text{max}} \]

Average annual produced power (kWh/h)
- Electrical to absorbed or aerodynamic power ("efficiency" = 95%)

Rated power (instantaneous peak power) for design of power take off or drive train system

Control system objectives:
- Ensure efficient and safe operation
 - control torque at below rated speed and the power above rated, and limit the structural loads.

Supervisory systems to control:
- Yaw control
- Rotor speed control (blade-pitch)
- Power control (generator torque)

Average annual produced power (kWh/h)
- electrical to absorbed or aerodynamic power ("efficiency" = 95%)

Rated power (instantaneous peak power) for design of power take off or drive train system

Control system objectives:
- Ensure efficient and safe operation
- control torque at below rated speed and the power above rated, and limit the structural loads.

Supervisory systems to control:
- Yaw control
- Rotor speed control (blade-pitch)
- Power control (generator torque)

Control systems, continued

Development trends
- Deeper water from fixed to floating
- Increased rotor size (capacity):
 - California 1980: 55 kW to 3.6 MW and upwards
 - One of a kind OG install. versus mass produced WTs.
 - No hydro carbons and people on board wind turbines
 - The wind energy sector is a "marginal business"
 - Return are more sensitive to IMMR (O&M) costs (access)

To avoid negative damping implied by a conventional controller, the controller frequency should be less than the natural frequency of the floating wind turbine

Servo-induced negative damping

Combined wind speed and direction sensor.

Schematic illustration of power production by a 5 MW bottom fixed wind turbine

Control systems, continued

Development trends
- Deeper water from fixed to floating
- Increased rotor size (capacity): California 1980: 55 kW to 3.6 MW and upwards

To avoid negative damping implied by a conventional controller, the controller frequency should be less than the natural frequency of the floating wind turbine

Servo-induced negative damping
Operation & Maintenance costs

- Failure rates and down times
 - Need for robust design, (reliable and few components) & smart maintenance, but also improved accessibility
 - Larger turbine size? (> 5 - 20 MW)
 - Predict, monitor and measure degradation

Costs of (bottom fixed) offshore wind turbines

- Contribution to total CapEx

<table>
<thead>
<tr>
<th>Component</th>
<th>Onshore</th>
<th>Offshore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine</td>
<td>70-85%</td>
<td>40-50%</td>
</tr>
<tr>
<td>Support structure</td>
<td>1-10%</td>
<td>15-30%</td>
</tr>
<tr>
<td>Grid connection</td>
<td>2-10%</td>
<td>15-20%</td>
</tr>
<tr>
<td>Electrical install.</td>
<td>1-10%</td>
<td>5-10%</td>
</tr>
<tr>
<td>Engineering</td>
<td>2-10%</td>
<td>5-10%</td>
</tr>
<tr>
<td>Other</td>
<td>2-10%</td>
<td>1-10%</td>
</tr>
</tbody>
</table>

- Reduce costs as done for land based turbines:
 - Increase turbine size
 - Improve manufacturing
 - Improve infrastructure

Technology development

- Support structure and drive train
 - Minimize cost while complying with safety and durability requirements. Larger units and reduced failure rates

- Support structures

- Rotor to generator (drive train)

- Power system:
 - Innovation in transmission, grid connection and system integration while maximizing power availability, quality, and stability

- Marine operations:
 - Improve efficiency of installation (transportation, site surveying, cable laying; etc.) and personnel access to facilities while minimizing the risks and the cost of operation.

R & D of Offshore Wind turbines

- New or improved Concepts
 - (a system of rotor, machinery, generator, support structure)
 - Characteristic behaviour
 - Satisfy criteria
 - Costs

- Design criteria
 - Power production
 - Limit states
 - Ultimate failure (ULS)
 - Ultimate failure initiated by faults (ALS)
 - Degradation (fatigue, corrosion, wear)
 - Account of automatic control

- Methods of analysis/software
 - Land based wind industry: FAST, Hawc3, Bladed+
 - Offshore oil and gas: SIMO/Riflex, Orcaflex etc.
Development of Floating Wind Turbines

- no commercial wind farms based on floating turbines yet

Support structure concepts

Floating turbines especially for deep water areas in the North Sea, USA, Mediterranean sea, Japan, Korea

- Design for mass production and easy installation; i.e., cost reduction
- At which water depth would floating wind turbines be competitive?

Design of Semi-submersible or Spar Concepts

5 MW wind turbine

Criteria

“Stability” requirement

- The tilt angle should be limited (e.g., to 7 degrees) under design overturning moment (800KN*90m)
- implying pitch a minimum restoring stiffness (C55)

Hydrodynamic performance requirement

- Heave natural period (T33) should be above 20s
- Pitch natural period should (T55) be around 30s

Structure response

- ULS/ALS, FLS

Cost effectiveness

- Steel weight
- Displacement
- Fabrication complexity

Displacement of semi-submersible designs vary between 4500 – 14 000 t
Ref.: Spar: 7500 t

Spar for 320 m vs 150 m water depth

Spar WT can be used to capture additional power from wave-induced motions for the below-rated wind regime (“WEC”) by modifying the controller

Dynamics of spar type turbine of size 5 MW

If resonance can not be avoided damping becomes crucial

Displacement of semi-submersible designs vary between 4500 – 14 000 t

Ref.: Spar: 7500 t
Design of floating wind turbines
Spar designs for 5 MW turbines

Stability, hydrodynamic and structural aspects

Mooring system aspects

Initial development of HyWind: 320 m w.d.
320 m w.d. 150 m w.d.

Combined spar WT and Torus WEC

Power production
• Shared mooring system and cable
• Synergy in maintenance

Design of Tension Leg Platform Wind Turbine
-excessive buoyancy creates pretension and limited heave and pitch

Constraints
• Surge/Sway natural periods
 > 25 s
• Heave/Roll/Pitch natural periods < 3.5 s
• Mean surge offset
 < 5% water depth
• No tendon slack:
 Tendons may not yield for
 2 times initial tendon tension
• Minimum displacement
 2 000 tonnes

Challenge:
-non-converging design spiral

Rotor blades
(for a 5 MW turbine the blade is 63 m long)

Smart blades
• Can active devices
 - reduce loads?
 - improve energy capture in low wind conditions?
 - increase the area swept with the same blade?

Full-scale structural testing of blades

Larger blades

Wind turbine with rated power: 5 MW

Electrical Power Production (kW)
Vmean (m/s)
0 1000 2000 3000 4000 5000 6000 7 9 11 13 15 17 19

Mean Wind Power - Spar FWT alone
Mean Wind Power - STC
Mean Wave Power - STC
Drive train – from rotor to generator

- Machineries (Gear systems, yaw & pitch mechanism, bearings, shafts)
- Structure

\[\approx 10 \text{ to } 1500 \text{ rpm} \]

Alternative drive trains?

- Fixed or variable speed w/gear box
- Direct drive variable speed

- With a weight penalty

A main question:
- Is the drive train, rotor,... used on bottom-fixed turbines feasible for floating ones?

Particular challenge for floating concepts:

Some alternative ways to reduce top weight

- Use of new materials and new designs

Analysis for design of offshore wind turbines

- Aerodynamic, hydrodynamics,....
- Integrated (aero-, hydro-, elastic-, servo-) analysis
- loads: irregular waves, turbulent wind, rotor rotation in a gravitational field and a nonuniform wind field,

- conditions: operating, parked – intact or with faults

- response extremes and histories - st.dev. (for fatigue, wear..) for different failure modes,

- time versus frequency domain simulation

- refined versus simplified methods

- Laboratory or field tests
Aerodynamic loads

BEM: blade element momentum theory based on lift, drag, moment coefficients (engineering methods)
- relies on airfoil data

CFD: Navier-Stokes (NS) equations for the global compressible flow in addition to the flow near the blades.

Example of CFD analysis: Effect of atmospheric icing on the blades
- Ice accumulation on the leading edge and - rime influencing the surface roughness (sand grain roughness height of 0.5 mm)

Atmospheric icing on a blade after 24 hours in a relevant offshore site

Numerical (RANS/K-ε) and experimental results for profile ICE-2 after 24 hours

Effect of icing on the lift coefficient
Effect of icing on the power

Aerodynamics for ice blade using the Fluent CFD code
Validation – especially the turbulence model; mesh sensitivity

Effect of wakes

Two or three turbines on a single floater

Benchmarking exercise from Offshore Wind Accelerator
- Turbines are arranged in a regular grid
- Measurements from Horns rev in Denmark

Challenging hydrodynamics phenomena for floating structures (wind turbines):

Load formulation for catenary moored spar based on Morison formula and pressure on the bottom,
- load calculation at the instantaneous position

Springing and ringing response in TLP tendons
- Wave - and high frequency
 - Springing occurs when steady state load components with frequencies 2ω, 3ω, 2ω or 3ω coincide with a natural frequency

www.ntnu.no
Particular challenges for floating concepts: System modelling, including automatic control

- Nacelle
- Rotor
- Blades
- Column
- Floater hull
- Mooring lines
- Water depth > 50 m
- Electrical cable (insulated conductor and armour)

Different concepts
- Modeling of excitation mechanisms (wind, waves and current)
- Rotor aerodynamics
- Hydrodynamics
- Structural dynamics
- Automatic control theory
- Power generation

- Tightly coupled system
- Nonlinear

Integrated dynamic analysis
Example: Spar type wind turbines

Example: Structural dynamic response of Catenary Moored Spar

Example: Ameliorating the negative damping in the dynamic responses of a TLS with downwind turbine

Figure 13: Bending moment at spar/tower interface induced by wind and wave for constant and turbulent wind cases (Operational and survival conditions), the statistical characteristics are based on 1 hour samples.
Simplified aerodynamic response analysis

The resulting wind forces on the rotor consist of 3 force and 3 moment components. A simplified model is achieved by only considering the thrust force.

\[T = \frac{1}{2} \rho A R^2 C_T U_{rel} \]

Further simplification is achieved by simulating the effect of control in the over rated response up to cut-out wind speed by a filter.

Comparison of drivetrain responses in FWT and WT

- Decoupled analysis to determine Tooth contact forces, Bearing forces, Gear deflections.
- Global aero-hydro-servo-elastic simulation
- Drivetrain multi-body simulation based on main shaft loading and nacelle motions

Tower bending moment

The simulation time for 1 hour real time:
- 15 min for SRT
- 24 hours for the “full” method

Example: response analysis under faults during power production of a spar wind turbine

- IEC code requires checking of nearly 40 cases with environmental loads for a system which is intact or fault. One case is:

Marine operations

Installation of wind turbines
- Requires a weather window
- Consideration of human factors
- Analysis of operations

Perspective on marine operations

- Alternative installation: Windflip
- HyWind installation

(Jiang et al, to appear)
Field tests or demonstration projects

- Laboratory tests
 - Rotor blades
 - Drive train
 - Support structure
 - Model basins/wind tunnels.
- Field tests to demonstrate
 - functionality
 - validate analysis tools

Beatrice, UK, 2 5-MW
Alpha Ventus, Germany, 12 5-MW (during construction)
Blue H (Dutch), in Italy
HyWind, Norway, 1 2.3-MW turbine

Other projects for floating wind turbines:
- Noweri (NOWITECH-NORCOWE); Norway
- Principle Power (American) at a site in Portugal
- Japan, Spain, USA

Concluding remarks

- A huge untapped potential for offshore wave and wind power exists. Only wind power is currently "commercial"
- Technology is still at an early stage, especially for floating wind turbines
 - Various concepts need to be pursued
 - possible influence on rotor and drive train design
- Rules and standards for design of floating wind turbine is urgently needed.
- Significant efforts are required to
 - increase robustness/reliability,
 - reduce costs (utilise mass production potential)
- Concerted efforts in R & D are required by the industry, research institutes and universities
- integrated dynamic analysis
- consideration of faults

Acknowledgement
Thanks to researchers Z Gao and M Karimirad,
and PhD candidates E E Bachynski,
M Etemaddar, Z Jiang, M I Kvittem, M. Muliawan,
Y Xing, in CeSOS and Nowitech
for excellent cooperation