A Monte Carlo approach for efficient estimation of extreme response statistics

A. Naess1,2) and O. Gaidai1)

1)Centre for Ships and Ocean Structures
2)Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim, Norway
Introduction

Even with present day computational power, the problem of estimating the extreme response of dynamic structural systems excited by stochastic loading processes is in general not easily done by standard Monte Carlo simulation.
Introduction

Even with present day computational power, the problem of estimating the extreme response of dynamic structural systems excited by stochastic loading processes is in general not easily done by standard Monte Carlo simulation.

This is due to the necessity of providing estimates of events with a very low probability of occurring, thereby requiring long simulation times.
Introduction

- Even with present day computational power, the problem of estimating the extreme response of dynamic structural systems excited by stochastic loading processes is in general not easily done by standard Monte Carlo simulation.

- This is due to the necessity of providing estimates of events with a very low probability of occurring, thereby requiring long simulation times.

- Recent years have seen the appearance of importance sampling techniques also for dynamical systems, but these are fairly involved and are not likely to become widely used in practical applications.
Introduction

Even with present day computational power, the problem of estimating the extreme response of dynamic structural systems excited by stochastic loading processes is in general not easily done by standard Monte Carlo simulation.

This is due to the necessity of providing estimates of events with a very low probability of occurring, thereby requiring long simulation times.

Recent years have seen the appearance of importance sampling techniques also for dynamical systems, but these are fairly involved and are not likely to become widely used in practical applications.

Are standard Monte Carlo methods really useless in this context?
Introduction

- Even with present day computational power, the problem of estimating the extreme response of dynamic structural systems excited by stochastic loading processes is in general not easily done by standard Monte Carlo simulation.

- This is due to the necessity of providing estimates of events with a very low probability of occurring, thereby requiring long simulation times.

- Recent years have seen the appearance of importance sampling techniques also for dynamical systems, but these are fairly involved and are not likely to become widely used in practical applications.

- Are standard Monte Carlo methods really useless in this context?

- NOT QUITE!
The Response Process

The equations of motion for the dynamic system considered is assumed to be of the form

\[M \ddot{X}(t) + H(X(t), \dot{X}(t), t) = F(t), \]
The Response Process

The equations of motion for the dynamic system considered is assumed to be of the form

\[M \ddot{X}(t) + H(X(t), \dot{X}(t), t) = F(t), \]

where:
- \(M \) denotes a generalized \(n \times n \) mass matrix,
- \(X = X(t) = (X_1(t), \ldots, X_n(t))^T \) is the system response vector,
- \(H \) is a nonlinear vector function,
- \(F(t) \) denotes a stochastic loading process.
The Response Process

The equations of motion for the dynamic system considered is assumed to be of the form

\[M \ddot{X}(t) + H(X(t), \dot{X}(t), t) = F(t), \]

\(M \) denotes a generalized \(n \times n \) mass matrix,
\(X = X(t) = (X_1(t), \ldots, X_n(t))^T \) = the system response vector,
\(H \) a nonlinear vector function,
\(F(t) \) denotes a stochastic loading process.

Hence the solution \(X(t) \) is also a stochastic vector process.
The Response Process

- The equations of motion for the dynamic system considered is assumed to be of the form

\[M\ddot{X}(t) + H(X(t), \dot{X}(t), t) = F(t), \]

- \(M \) denotes a generalized \(n \times n \) mass matrix,
- \(X = X(t) = (X_1(t), \ldots, X_n(t))^T \) = the system response vector,
- \(H \) a nonlinear vector function,
- \(F(t) \) denotes a stochastic loading process.

- Hence the solution \(X(t) \) is also a stochastic vector process.

- For specific prediction purposes, it is usually the extreme values of one, or possibly a combination of several, of the component processes of \(X(t) \) that is sought. For simplicity, denote it by \(X(t) \).
The Mean Upcrossing Rate

\[N^+(\xi; t_1, t_2) = \text{the random number of times that the process } X(t) \text{ upcrosses the level } \xi \text{ during a time interval } (t_1, t_2). \]
The Mean Upcrossing Rate

$N^+(\xi; t_1, t_2) = \text{the random number of times that the process } X(t) \text{ upcrosses the level } \xi \text{ during a time interval } (t_1, t_2).$

$\nu^+(\xi; t) = \text{the mean rate of } \xi\text{-upcrossings of } X(t) \text{ at time } t.$
The Mean Upcrossing Rate

\[N^+(\xi; t_1, t_2) = \text{the random number of times that the process } X(t) \text{ upcrosses the level } \xi \text{ during a time interval } (t_1, t_2). \]

\[\nu^+(\xi; t) = \text{the mean rate of } \xi\text{-upcrossings of } X(t) \text{ at time } t. \]

Under suitable regularity conditions on the response process the following formula obtains

\[\nu^+(\xi; t) = \lim_{\Delta t \to 0} \frac{E[N^+((\xi; t - \Delta t/2, t + \Delta t/2))]}{\Delta t} = \int_0^\infty s f_{X(t)\dot{X}(t)}(\xi, s) \, ds \]

where \(f_{X(t)\dot{X}(t)}(\cdot, \cdot) \) denotes the joint PDF of \(X(t) \) and

\[\dot{X}(t) = dX(t)/dt. \]
The Mean Upcrossing Rate

\[N^+(\xi; t_1, t_2) = \text{the random number of times that the process } X(t) \text{ upcrosses the level } \xi \text{ during a time interval } (t_1, t_2). \]

\[\nu^+(\xi; t) = \text{the mean rate of } \xi\text{-upcrossings of } X(t) \text{ at time } t. \]

Under suitable regularity conditions on the response process the following formula obtains

\[\nu^+(\xi; t) = \lim_{\Delta t \to 0} \frac{E[N^+((\xi; t - \Delta t/2, t + \Delta t/2)])}{\Delta t} = \int_0^\infty s f_{X(t)\dot{X}(t)}(\xi, s) \, ds \]

where \(f_{X(t)\dot{X}(t)}(\cdot, \cdot) \) denotes the joint PDF of \(X(t) \) and \(\dot{X}(t) = dX(t)/dt. \)

\[\nu^+(\xi; t) = \int_0^\infty s f_{\dot{X}(t)|X(t)}(s|\xi) \, ds \, f_{X(t)}(\xi) = \mathbb{E}[\dot{X}(t)^+|X(t) = \xi] \, f_{X(t)}(\xi), \]

where \(\dot{X}^+ = \max(\dot{X}, 0). \)
The Mean Upcrossing Rate

The extreme value of the response process $X(t)$:

$$M(T) = \max\{X(t); 0 \leq t \leq T\}$$
The Mean Upcrossing Rate

The extreme value of the response process $X(t)$:

$$M(T) = \max\{X(t); 0 \leq t \leq T\}$$

The distribution of $M(T)$ under the Poisson assumption is given by the following relation

$$F_{M(T)}(\xi) = \text{Prob}(M(T) \leq \xi) = \exp\left\{ - \int_0^T \nu^+(\xi; t) \, dt \right\}$$
The Mean Upcrossing Rate

The extreme value of the response process $X(t)$:

$$M(T) = \max\{X(t); 0 \leq t \leq T\}$$

The distribution of $M(T)$ under the Poisson assumption is given by the following relation

$$F_{M(T)}(\xi) = \text{Prob}(M(T) \leq \xi) = \exp \left\{ - \int_0^T \nu^+(\xi; t) \, dt \right\}$$

This brings out the crucial role of the mean upcrossing rate $\nu^+_X(\xi; t)$ in determining the extreme value distribution.
The Mean Upcrossing Rate

The extreme value of the response process $X(t)$:

$$M(T) = \max\{X(t); 0 \leq t \leq T\}$$

The distribution of $M(T)$ under the Poisson assumption is given by the following relation

$$F_{M(T)}(\xi) = \text{Prob}(M(T) \leq \xi) = \exp\left\{-\int_0^T \nu^+(\xi; t) \, dt\right\}$$

This brings out the crucial role of the mean upcrossing rate $\nu^+_X(\xi; t)$ in determining the extreme value distribution.

Note that the parameter of the Poisson distribution is

$$E[N^+(\xi; 0, T)] = \int_0^T \nu^+(\xi; t) \, dt.$$
The Mean Upcrossing Rate

It is expedient to rewrite the extreme value distribution as

\[F_{M(T)}(\xi) = \text{Prob}(M(T) \leq \xi) = \exp \left\{ -\bar{\nu}^+(\xi) T \right\} , \]

where

\[\bar{\nu}^+(\xi) = \frac{1}{T} \int_0^T \nu^+(\xi; t) \, dt. \]
The Mean Upcrossing Rate

It is expedient to rewrite the extreme value distribution as

\[F_{M(T)}(\xi) = \text{Prob}(M(T) \leq \xi) = \exp\left\{ -\bar{\nu}^+(\xi) T \right\}, \]

where

\[\bar{\nu}^+(\xi) = \frac{1}{T} \int_0^T \nu^+(\xi; t) \, dt. \]

The averaged mean upcrossing rate \(\bar{\nu}^+(\xi) \) is conveniently estimated from simulated response time histories.
Empirical Estimation of the Mean Upcrossing Rate

\[n^+(\xi; 0, T) = \text{the counted number of upcrossings during the time interval } (0, T) \text{ from a particular simulated time history.} \]
Empirical Estimation of the Mean Upcrossing Rate

\(n^+(\xi; 0, T) = \) the counted number of upcrossings during the time interval \((0, T)\) from a particular simulated time history.

The sample mean value estimate of \(\bar{n}^+(\xi) \):

\[
\hat{\nu}^+(\xi) = \frac{1}{k} \sum_{j=1}^{k} n_j^+(\xi; 0, T)
\]
Empirical Estimation of the Mean Upcrossing Rate

\(n^+(\xi; 0, T) = \) the counted number of upcrossings during the time interval \((0, T)\) from a particular simulated time history.

The sample mean value estimate of \(\bar{\nu}^+(\xi) \):

\[
\hat{\nu}^+(\xi) = \frac{1}{kT} \sum_{j=1}^{k} n_j^+(\xi; 0, T)
\]

For a suitable number \(k \), e.g. \(k \geq 20 - 30 \), a good approximation of the 95% confidence interval for the value \(\bar{\nu}^+(\xi) \) is

\[
\text{conf. band}(\xi) = \hat{\nu}^+(\xi) \pm 1.96 \frac{\hat{s}(\xi)}{\sqrt{k}}
\]
Empirical Estimation of the Mean Upcrossing Rate

\(n^+ (\xi; 0, T) \) = the counted number of upcrossings during the time interval \((0, T)\) from a particular simulated time history.

The sample mean value estimate of \(\bar{\nu}^+ (\xi) \):

\[
\hat{\nu}^+ (\xi) = \frac{1}{kT} \sum_{j=1}^{k} n_j^+ (\xi; 0, T)
\]

For a suitable number \(k \), e.g. \(k \geq 20 - 30 \), a good approximation of the 95% confidence interval for the value \(\bar{\nu}^+ (\xi) \) is

\[
\text{conf. band}(\xi) = \hat{\nu}^+ (\xi) \pm 1.96 \hat{s}(\xi) / \sqrt{k}
\]

The empirical standard deviation \(\hat{s}(\xi) \) is given as

\[
\hat{s}(\xi)^2 = \frac{1}{k-1} \sum_{j=1}^{k} \left(\frac{n_j^+ (\xi; 0, T)}{T} - \hat{\nu}^+ (\xi) \right)^2
\]
The PDF $f_X(x)$ of $X(t)$ is written as

$$f_X(x) = \exp\{-\alpha(x)\},$$

where $\alpha(x)$ is a well-behaved function that is strictly increasing for increasing x for $x \geq x_0$ for some x_0.
Mean Upcrossing Rate versus PDF - stationary case

- The PDF $f_X(x)$ of $X(t)$ is written as

$$f_X(x) = \exp \{-\alpha(x)\},$$

where $\alpha(x)$ is a well-behaved function that is strictly increasing for increasing x for $x \geq x_0$ for some x_0.

- Now we can write

$$\nu^+_X(x) = q \exp \{-\alpha(x) + \delta(x)\},$$

where $q = \mathbb{E}[\dot{X}^+]$, $\exp \{\delta(x)\} = \mathbb{E}[\dot{X}^+|X = x]/\mathbb{E}[\dot{X}^+]$.

A Monte Carlo approach for efficient estimation of extreme response statistics – p. 8/35
Mean Upcrossing Rate versus PDF - stationary case

- The PDF $f_X(x)$ of $X(t)$ is written as

$$f_X(x) = \exp \{-\alpha(x)\},$$

where $\alpha(x)$ = a well-behaved function that is strictly increasing for increasing x for $x \geq x_0$ for some x_0.

- Now we can write

$$\nu_X^+(x) = q \exp \{-\alpha(x) + \delta(x)\},$$

where $q = \mathbb{E}[\dot{X}^+]$, $\exp \{\delta(x)\} = \mathbb{E}[\dot{X}^+|X = x]/\mathbb{E}[\dot{X}^+]$.

- $q \exp \{-\alpha(x)\} = q f_X(x)$ expresses the mean upcrossing rate for the case with independent $X(t)$ and $\dot{X}(t)$.
Assumption: $|\delta(x)|$ is of much slower increase than $\alpha(x)$ as $x \to \infty$.
Mean Upcrossing Rate versus PDF - stationary case

- Assumption: $|\delta(x)|$ is of much slower increase than $\alpha(x)$ as $x \to \infty$.

- It is seen that

$$\ln \nu_X^+(x) = \ln f_X(x) + \ln q + \delta(x)$$

$$= -\alpha(x) + \ln q + \delta(x)$$
Assumption: $|\delta(x)|$ is of much slower increase than $\alpha(x)$ as $x \to \infty$.

It is seen that

$$
\ln \nu_X^+(x) = \ln f_X(x) + \ln q + \delta(x) \\
= -\alpha(x) + \ln q + \delta(x)
$$

Plotting $\ln \nu_X^+(x)$ versus $\ln f_X(x)$ will then clearly show to what extent $|\delta(x)|$ is dominated by $\alpha(x)$ as $x \to \infty$.
Extrapolation of Mean Upcrossing Rate

Assumption:

\[\alpha(x) = a(x - b)^c - d(x) , \quad x \geq x_0 , \]

where \(a, b \) and \(c \) are suitable constants, and \(d(x) \) is a function of much slower increase than \(\alpha(x) \).
Extrapolation of Mean Upcrossing Rate

- Assumption:

\[\alpha(x) = a(x - b)^c - d(x), \quad x \geq x_0, \]

where \(a, b \) and \(c \) are suitable constants, and \(d(x) \) is a function of much slower increase than \(\alpha(x) \).

- Hence, we assume that

\[\nu_X^+(x) = \tilde{q}(x) \exp\{-a(x - b)^c\}, \quad x \geq x_0, \]

where \(\tilde{q}(x) = q \exp\{\delta(x) + d(x)\} \).
Extrapolation of Mean Upcrossing Rate

Assumption:

\[\alpha(x) = a(x - b)^c - d(x), \quad x \geq x_0, \]

where \(a, b \) and \(c \) are suitable constants, and \(d(x) \) is a function of much slower increase than \(\alpha(x) \).

Hence, we assume that

\[\nu_X^+(x) = \tilde{q}(x) \exp\{ -a(x - b)^c \}, \quad x \geq x_0, \]

where \(\tilde{q}(x) = q \exp\{ \delta(x) + d(x) \} \).

The particular choice for the function \(\alpha(x) \) reflects the basic assumption of an asymptotic Gumbel distribution of the extremes.
Extrapolation of Mean Upcrossing Rate

It follows that

$$\log \left| \log \left(\frac{\nu^+_X(x)}{\tilde{q}(x)} \right) \right| = c \log(x - b) + \log a, \ x \geq x_0 (> b).$$
Extrapolation of Mean Upcrossing Rate

- It follows that
 \[
 \log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| = c \log(x - b) + \log a, \ x \geq x_0(> b).
 \]

- Hence, \(\log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| \) plotted versus \(\log(x - b) \) exhibits linear tail behaviour.
Extrapolation of Mean Upcrossing Rate

It follows that

$$\log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| = c \log(x - b) + \log a, \quad x \geq x_0(> b).$$

Hence, \(\log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| \) plotted versus \(\log(x - b) \) exhibits linear tail behaviour.

Can \(\tilde{q}(x) \) be replaced by a constant?
Extrapolation of Mean Upcrossing Rate

It follows that

$$\log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| = c \log(x - b) + \log a, \quad x \geq x_0 (> b).$$

Hence, \(\log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| \) plotted versus \(\log(x - b) \) exhibits linear tail behaviour.

Can \(\tilde{q}(x) \) be replaced by a constant? Let’s try.
It follows that

$$\log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| = c \log(x - b) + \log a, \quad x \geq x_0(> b).$$

Hence, \(\log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| \) plotted versus \(\log(x - b) \) exhibits linear tail behaviour.

Can \(\tilde{q}(x) \) be replaced by a constant? Let’s try.

Choice of initial value \(\tilde{q}_0 \) for \(\tilde{q}(x) \) would be based on looking at the ratio \(\nu_X^+(x)/f_X(x) = \tilde{q}(x) \exp\{-d(x)\} \) for large \(x \).
Extrapolation of Mean Upcrossing Rate

It follows that

\[
\log \left| \log \left(\frac{\nu_X^+(x)}{\tilde{q}(x)} \right) \right| = c \log(x - b) + \log a, \ x \geq x_0(> b).
\]

Hence, \(\log \left| \log \left(\frac{\nu_X^+(x)/\tilde{q}(x)}{\tilde{q}(x)} \right) \right| \) plotted versus \(\log(x - b) \) exhibits linear tail behaviour.

Can \(\tilde{q}(x) \) be replaced by a constant? Let’s try.

Choice of initial value \(\tilde{q}_0 \) for \(\tilde{q}(x) \) would be based on looking at the ratio \(\nu_X^+(x)/f_X(x) = \tilde{q}(x) \exp\{-d(x)\} \) for large \(x \).

Practical solution: \(\tilde{q}_0 = \langle \nu_X^+(x)/f_X(x) \rangle \) (tail average), followed by optimization wrt \(b \).
Numerical Examples - Duffing oscillator

The equation of motion is

\[\ddot{X} + 2\zeta\omega_0 \dot{X} + \omega_0^2 X (1 + \lambda X^2) = W(t) \]
Numerical Examples - Duffing oscillator

- The equation of motion is

\[\ddot{X} + 2\zeta\omega_0 \dot{X} + \omega_0^2 X (1 + \lambda X^2) = W(t) \]

- \(W(t) = \) stationary Gaussian white noise.
Numerical Examples - Duffing oscillator

- The equation of motion is

\[\ddot{X} + 2\zeta \omega_0 \dot{X} + \omega_0^2 X (1 + \lambda X^2) = W(t) \]

- \(W(t) \) = stationary Gaussian white noise.

- \(\omega_0 = 1, \lambda = 1, \zeta = 0.5 \).
Numerical Examples - Duffing oscillator

- The equation of motion is

\[\ddot{X} + 2\zeta\omega_0 \dot{X} + \omega_0^2 X (1 + \lambda X^2) = W(t) \]

- \(W(t) = \) stationary Gaussian white noise.

- \(\omega_0 = 1, \lambda = 1, \zeta = 0.5. \)

- \(\lambda = 1 \Rightarrow \) strongly nonlinear system.
Numerical Examples - Duffing oscillator

- The equation of motion is

\[\ddot{X} + 2\zeta\omega_0 \dot{X} + \omega_0^2 X(1 + \lambda X^2) = W(t) \]

- \(W(t) \) = stationary Gaussian white noise.

- \(\omega_0 = 1, \ \lambda = 1, \ \zeta = 0.5 \).

- \(\lambda = 1 \Rightarrow \) strongly nonlinear system.

- \(f_{X\dot{X}} = f_X f_{\dot{X}} \) is known in closed form.
Numerical Examples - Duffing oscillator

Upcrossing rates estimated from Monte Carlo simulations (*) with 95% confidence band (—) versus analytical results (—-—) for the mean upcrossing rate.
Numerical Examples - Duffing oscillator

Monte Carlo (∗) and analytical (—) results the mean upcrossing rate versus PDF on the log scale. Slope = 1.0
Numerical Examples - Hysteretic oscillator

The equation of motion is

$$\ddot{X} + 2\zeta \dot{X} + h(t) = W(t)$$
Numerical Examples - Hysteretic oscillator

The equation of motion is

\[\ddot{X} + 2\zeta \dot{X} + h(t) = W(t) \]

\(W(t) = \) stationary Gaussian white noise. The hysteretic restoring force is

\[h(t) = \alpha \omega_0^2 X + (1 - \alpha) Z(t) \]

where \(\alpha = \) post-yielding stiffness parameter (\(0 \leq \alpha \leq 1 \)).
Numerical Examples - Hysteretic oscillator

- The equation of motion is

\[\ddot{X} + 2\zeta \dot{X} + h(t) = W(t) \]

- \(W(t) \) = stationary Gaussian white noise. The hysteretic restoring force is

\[h(t) = \alpha \omega_0^2 X + (1 - \alpha) Z(t) \]

where \(\alpha = \) post-yielding stiffness parameter (0 \(\leq \) \(\alpha \) \(\leq \) 1).

- The hysteretic component:

\[\dot{Z} = -\gamma |\dot{X}| Z |Z|^{\nu-1} - \beta |\dot{X}| Z^\nu + A \dot{X} \]
Numerical Examples - Hysteretic oscillator

- The equation of motion is

\[\ddot{X} + 2\zeta \dot{X} + h(t) = W(t) \]

- \(W(t) = \) stationary Gaussian white noise. The hysteretic restoring force is

\[h(t) = \alpha \omega_0^2 X + (1 - \alpha) Z(t) \]

where \(\alpha = \) post-yielding stiffness parameter \((0 \leq \alpha \leq 1)\).

- The hysteretic component:

\[\dot{Z} = -\gamma |\dot{X}| Z |Z|^{\nu - 1} - \beta |\dot{X}| Z^\nu + A \dot{X} \]

- \(\omega_0 = 1, \alpha = 0.05, \zeta = 0.1, A = \nu = 1, \gamma = \beta = 0.5. \)
Numerical Examples - Hysteretic oscillator

- The equation of motion is

\[\ddot{X} + 2\zeta \dot{X} + h(t) = W(t) \]

- \(W(t) \) = stationary Gaussian white noise. The hysteretic restoring force is

\[h(t) = \alpha \omega_0^2 X + (1 - \alpha) Z(t) \]

where \(\alpha = \) post-yielding stiffness parameter (\(0 \leq \alpha \leq 1 \)).

- The hysteretic component:

\[\dot{Z} = -\gamma |\dot{X}| Z |Z|^{\nu-1} - \beta |\dot{X}| Z^{\nu} + A \dot{X} \]

- \(\omega_0 = 1, \alpha = 0.05, \zeta = 0.1, A = \nu = 1, \gamma = \beta = 0.5 \).

- \(f_X \dot{X} \) unknown.
Numerical Examples - Hysteretic oscillator

Monte Carlo results for the mean upcrossing rate, 100 realizations (*) along with 95% confidence bands (−−) versus 50000 realizations (—).
Numerical Examples - Hysteretic oscillator

Monte Carlo results for the mean upcrossing rate versus PDF, 100 realizations (*) versus 50000 realizations (—). Slope = 1.02
Numerical Examples - Jacket structure

The Kvitebjørn jacket platform with the superstructure removed.
Numerical Examples - Jacket structure

The equation of motion for the horizontal excursions of the jacket at main deck level is

\[M \ddot{X} + C \dot{X} + KX = Q. \]
Numerical Examples - Jacket structure

The equation of motion for the horizontal excursions of the jacket at main deck level is

$$\mathbf{M}\ddot{\mathbf{X}} + \mathbf{C}\dot{\mathbf{X}} + \mathbf{KX} = \mathbf{Q}.$$

$$\mathbf{X} = (X_1, \ldots, X_N)^T$$ where \(X_k = X_k(t), \ k = 1, \ldots, N\), denote displacement of the \(k\)-th node \(\mathbf{x}_k = (x_k, y_k, z_k)\) in the wave direction, which is the positive \(x\)-direction.
Numerical Examples - Jacket structure

- The equation of motion for the horizontal excursions of the jacket at main deck level is

\[M\ddot{X} + C\dot{X} + KX = Q. \]

- \(X = (X_1, \ldots, X_N)^T \) where \(X_k = X_k(t), k = 1, \ldots, N \), denote displacement of the \(k \)-th node \(x_k = (x_k, y_k, z_k) \) in the wave direction, which is the positive \(x \)-direction.

- \(Q = (Q(t, x_1), \ldots, Q(t, x_N))^T \), where

\[Q(t, x_k) = F_{in}(t, x_k) + F_d(t, x_k), \quad k = 1, \ldots, N \]

and

\[-d = z_1 \leq z_k \leq z_N = L - d, \]

where \(d = 190 \) m is the water depth and \(L = 216 \) m is the jacket support height.
The inertia force components are given as

\[F_{in}(t, x_k) = k_m \dot{U}(t, x_k) \]
Numerical Examples - Jacket structure

- The inertia force components are given as

\[
F_{in}(t, x_k) = k_m \ddot{U}(t, x_k)
\]

- The drag force components

\[
F_d(t, x_k) = k_d \left(U(t, x_k) + U_c \right) \left| U(t, x_k) + U_c \right|
\]
The inertia force components are given as

$$F_{in}(t, x_k) = k_m \dot{U}(t, x_k)$$

The drag force components

$$F_d(t, x_k) = k_d (U(t, x_k) + U_c) |U(t, x_k) + U_c|$$

$$k_m = C_m \rho \pi D^2 / 4, \quad k_d = C_d \rho D / 2$$
Numerical Examples - Jacket structure

Gumbel plot of 20 simulated 3 hour extremes with fitted Gumbel distribution. Sea state with $H_s = 12$ m, $T_p = 12$ s.
Numerical Examples - Jacket structure

Gumbel plot of 20 simulated 3 hour extremes with fitted Gumbel distribution. Sea state with $H_s = 14.7$ m, $T_p = 15$ s.
Empirical PDF of the 90% fractile value based on samples of size 20 for the sea state with $H_s = 12$ m, $T_p = 12$ s.
Numerical Examples - Jacket structure

Empirical PDF of the 90% fractile value based on samples of size 20 for the sea state with $H_s = 14.7$ m, $T_p = 15$ s.
Numerical Examples - Jacket structure

Mean upcrossing rate statistics along with 95% confidence bands (---) for the sea state with $H_s = 12$ m, $T_p = 12$ s, $\sigma = 0.047$ m. *: Monte Carlo; − − − : linear fit.
Numerical Examples - Jacket structure

Mean upcrossing rate statistics along with 95% confidence bands (---) for the sea state with $H_s = 14.7$ m, $T_p = 15$ s, $\sigma = 0.066$ m. *: Monte Carlo; − − − : linear fit.
Numerical Examples - Jacket structure

Transformed plot along with 95% confidence bands (---) for the sea state with $H_s = 12$ m, $T_p = 12$ s, $\sigma = 0.047$ m. *: Monte Carlo; ------: linear fit, $q = 0.04$, $b = 1.4\sigma$.

A Monte Carlo approach for efficient estimation of extreme response statistics – p. 27/35
Numerical Examples - Jacket structure

Transformed plot along with 95% confidence bands (––) for the sea state with $H_s = 14.7$ m, $T_p = 15$ s, $\sigma = 0.066$ m. * : Monte Carlo; ——— : linear fit, $q = 0.06$, $b = 0.9\sigma$.

![Graph showing the transformed plot with confidence bands and fitting lines for the sea state with given parameters.](image-url)
Numerical Examples - TLP

Sketch of submerged part of TLP.
Numerical Examples - TLP

The equation of motion for the horizontal excursions of the TLP is

\[M\ddot{Z}(t) + D(t)\dot{Z}(t) + C(\dot{Z}(t)) + K(Z(t)) = F(t) \]
Numerical Examples - TLP

- The equation of motion for the horizontal excursions of the TLP is
 \[M\ddot{Z}(t) + D(t)\dot{Z}(t) + C(\dot{Z}(t)) + K(Z(t)) = F(t) \]

- \[F(t) = F_1(t) + F_2(t) \]
Numerical Examples - TLP

- The equation of motion for the horizontal excursions of the TLP is

\[M\ddot{Z}(t) + D(t) \dot{Z}(t) + C(\dot{Z}(t)) + K(Z(t)) = F(t) \]

- \(F(t) = F_1(t) + F_2(t) \)

- A simplified model for the surge response is adopted here:
Numerical Examples - TLP

- The equation of motion for the horizontal excursions of the TLP is
 \[M \ddot{Z}(t) + D(t) \dot{Z}(t) + C(\dot{Z}(t)) + K(Z(t)) = F(t) \]

- \(F(t) = F_1(t) + F_2(t) \)

- A simplified model for the surge response is adopted here:
 \[\ddot{Z} + 2 \omega_e (\zeta_0 + \tilde{c}F_2(t)) \dot{Z} + \omega_e^2 (Z + \tilde{\epsilon}Z^3) = \frac{1}{M} (F_1(t) + F_2(t)) \]
Crossing rates by Monte Carlo simulation (*) with 95% confidence bands (— —) and by saddle point integration (——) for the case of linear dynamics ($\tilde{c} = \tilde{\varepsilon} = 0$). Sea state with $H_s = 10$ m, $T_p = 11$ s.
Numerical Examples - TLP

Crossing rates by Monte Carlo simulation (*) with 95% confidence bands (——) and by saddle point integration (—) for the case of linear dynamics ($\tilde{c} = \tilde{\varepsilon} = 0$). Sea state with $H_s = 15 \text{ m}, T_p = 17 \text{ s}$.

![Graph showing crossing rates with confidence bands and saddle point integration for a sea state with $H_s = 15 \text{ m}, T_p = 17 \text{ s}$]
Numerical Examples - TLP

Crossing rates by Monte Carlo simulation (*) with 95% confidence bands (—) for the case of nonlinear dynamics, \(q = 0.2, b = 5.8 \sigma_Z \).

Sea state with \(H_s = 10 \text{ m}, T_p = 11 \text{ s} \).
Numerical Examples - TLP

Crossing rates by Monte Carlo simulation (*) with 95% confidence bands (––) for the case of nonlinear dynamics, $q = 0.2$, $b = 2.9 \sigma_Z$. Sea state with $H_s = 15 \text{ m}$, $T_p = 17 \text{ s}$.

nonlinear TLP, sea state with $H_s=15\text{m}$, $T_p=17\text{s}$
Conclusions

From the variety of stochastic systems studied, one can conclude that the extrapolation procedure proposed appears to be quite general and robust, while it is simple and practical to use.
Conclusions

- From the variety of stochastic systems studied, one can conclude that the extrapolation procedure proposed appears to be quite general and robust, while it is simple and practical to use.

- Optimized linear fit and extrapolation on a double logarithmic scale gives accurate predictions of the mean upcrossing rate and thus extreme response statistics.
Conclusions

From the variety of stochastic systems studied, one can conclude that the extrapolation procedure proposed appears to be quite general and robust, while it is simple and practical to use.

Optimized linear fit and extrapolation on a double logarithmic scale gives accurate predictions of the mean upcrossing rate and thus extreme response statistics.

The CPU time is in all examples tractable, and it is reduced by a factor of ≥ 100, compared to straight-forward Monte Carlo simulations down to the same extreme value levels.